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Abstract

The vacuum magnetic fields of linear stellarators with shaped
coils are discussed. Two types of expansions are given. The
fast one is valid for sufficiently slender coils and the se-
cond one for coils with a sufficiently small helical deviation.
Some numerical results are described also and compared with
the results of the approximations just mentioned.




1. Introduction

Linear high-B8 stellarators have been investigated both with
helical windings in ©-pinch coils and with shaped coils /1/ .
The magnetohydrodynamic equilibrium configuration in a linear
stellarator can be described by the well known elliptic diffe-
rential equation for the flux function v , which may be written
as follows (/2/, for instance):

A0 NF= S Q;J iy s
ror m2+k2r2 dT r23% 2

2k J(¥)  _ ,cdp(®) _ _d(P asw) 1)

(m2+r2k2)2 dY m2+r2k2 av

Here % is the so-called helical coordinate

€ = my - kz (2)

and it is assumed that all quantities depend on r and ¥ only,
this being the definition of helical symmetry.

r,y, 2 are cylindrical coordinates.

m and k are the azimuthal and longitudinal wave numbers of
the configuration. The two functions p(¥) and J(¥) can be pre-
scribed arbitrarily. p is the pressure of the plasma.

d , p and ¥ define the magnetic fields and currents in the
following manner:
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so that
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Mg - rkj, = - Ir 37 " (9)
dad dJd
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do = X gy * i
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Unfortunately, it is not clear how one has to choose p("¥) and
J(Y) in order to obtain configurations of experimental rele-
vance. But even the vacuum configuration in a linear stella-
rator device is of interest in connection with the experi-
ments, and we shall therefore derive some of the properties
of the vacuum field.

For the vacuum field we have to choose

p = const (11)
and J = const (12)
as can be seen from the preceding formulas, so that eq.(1)
now reads 10 " 2%]+‘ 1 agy ) omkJ
r or 'm“_‘_‘2+k2r2 or| T IE2 g gE (m2+r2k?)2 (13)

If the configuration is to be produced by a shaped coil with

a "rotating" circular cross section of radius ¢, as described

by fig.1, we have to solveeq.(13) with the boundary conditions
¥ = const on the surface of the shaped coil (14)
VY= finite on the axis 7r=¢ (15)

Y4

«
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Figure 1b
The cross section is circular
Figure 1a and it rotates around the axis
The wavelength of the con- with the center of the circle
figuration is at a distance a from the axis
A= 21/k ; (a <c)



It is sufficient to consider one plane corresponding to z=0
€.8. ‘§=q> . The boundary condition is then

v (r,p) = const (16)
on the circle
r? - 2r a cos@ = P (17)

where ¥(r,®) is the most general solution of eq.(13)for p and
J constant fulfilling the non-singularity condition (15):
J

= —QI'(rk)2 + rkg a, I!(nkr) cos(n¢) (18)

where Iﬁ denotes the modified BESSEL function derived with
respect to its argument. The constant J can be chosen arbitra-

rily and is connected with the strength of the fields obtained.

The coefficients 3; have to be derived from the boundary con-
dition (16). To simplify the notation we introduce dimension-
less quantities

R = rk (19)
A = ak (20)
C = ck (21)
P = Z—fv (22)
i
> B
b =3 (23)
a =19 % (24)
so that - in the plane 2z=0 -
00
Bi= RA+ 2R Z a 1! (nR) cos(ng) (25)
b, =1 + éz'nanIn(nR) cos(ne) (26)
by = - Jﬁn‘; nanIn(nR) cos(ny) (27)
00
. ] 4
b= - 5; nanIn(nR) sin(n?@) (28)

where the coefficients are defined by the boundary condition

F=const for R? -2RAcosT = 02 —p° (29)



In the following sections we shall first derive some appro-
ximate results by expanding F for sufficiently small R=kr
and then discuss some numerical results

2. Expansion for a slender helical coil

If the coil is sufficiently slender, i.e. if R«1, C?<<£%)
we can expand F. If R is small and of first order, the devia-
tion A and radius C are also small. We therefore assume that
the three quantities R, A, C are all small of first order.

We then expand F as given by eq.(25) keeping all quantities
up to the gk order. We use

2 2 2
cos@ = R EEA +A
cos(2¢) = ZCOS%? -1 (30)
cos(3g) = 40033¢ - 3cosg
00 1 z n+2k
In(Z) =K§m (5) (31)
so that 1 3.2 Bt =t
Li(R) =5 ¢ 7GR" + g3i7g B
I)(2R)= -;:R + %123 (32)

I4(3R)= %R°
More terms than given in eq.(30) and (32) are not needed
because, as we shall anticipate, the coefficients a, turn out
to be small of order n. Expanding along the circle and assu-
ming that F is constant on it, we obtain the following results

by putting equal to zero the coefficients of R2, R4 and R6 :

4 2-2 4
% 322, 2 22CT +T7TACT +75A
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th and 3rd order re-

spectively, so that the corresponding terms in eq.(25) are
are of at least 6th order. The magnetic axis of the configu-

Here ayy 8y, az are given up to Sth, 4

ration may be obtained by looking for the stationary value
of F as given by eq.(25) for ¢=0. For a=0 the magnetic axis
would coincide with the geometric axis r=0. For a30 the ma-
gnetic axis is shifted to r=s (R=S=ks) and, taking into ac-
count terms up to the same order as above, one finds

b 0n2,2
S = A[1 - go® 4 18 2gc A J (34)

The coordinates of the magnetic axis in the plane z=0 are thus
R=S, ¢=0. In general, its coordinates are R=S, ¢=kz. The magne-
tic axis has to be a magnetic field line itself. Indeed, on the
axis the radial magnetic field is zero, while its azimuthal and
longitudinal components B? and B, are related by egs. (4)

and (5). For m=1 and because on the magnetic axis we have ¥ _o

2r
eqs. (4) and (5) yield
By
§, =k (35)

so that the field line is defined by
r de _ B¢ _
iz “ 5 Tk
z
and dr rnv Br

O which again gives ¢=kz,

The cross sections of the magnetic surfaces Y=const in the pla-
nes z=const are approximately (up to terms of 4th order) cirec-
les. Expanding as before one can show that F is constant
(except for terms of higher than 4th order) on circles of
\{ radius 4 (D=kd), centered at
‘ r=b (B=kb), where B is the
following function of D:

B = A(1- %(02-D2)) (36)

For C=D we have B=A, correspon-
ding to our boundary condition.

. For D=0 we find 2
- B=A(1- 2C?)

which except for higher order

Figure 2 terms reproduces the above
given result (34),




3. Expansion for small helical deviation

The results of the preceding section can be generalized, by

allowing the radius C to be large, but still keeping the he-
lical deviation A small (A< 1).We may write F from eq.(25)

in the following manner:

2
_ p2 X 4/ X _ay7o
F =R +2R[;1 2 I1(R) + a, (225 1)I,(2R)

R
3 (37)
X X\
+ aglals SHILGR) .. |
where X =R cos@ (38)
Now F has to be constant along the circle
R® = 24X + ¢2 - 52 (39)
or 2 3
- Xy (L X2 s a4 D
R=0C+ FA- (55 + lcg)A + (203 + 205)A ¥ (40)

up to 34 order in A. Introducing this into eq.(37) together
with the expansions of I{, Ié, I; we obtain F in the follo-
wing form:

- 2 3
F = c, + c1X + 02X + 03X +.. (41)

We require ¢q =c¢, = ¢z =0 (42)

thus obtaining three equations for a1,32,a3 which yield, up
to 3rd order in A

2 1. (c)
A [ Ls— + 17 (c) +

]
I
>
H
o—_\

a1 -8 14(0)2
4 Iy7(0) 1) (20) ]]
> T3(20)
2 I;'(6)
a, = A" 3 I1(C) IL(20) (43)

41.)'(c) 1.'(2c) 1.'(C)
3 3 1 1 2 1 1)
8z = - A% 3 TI(30) T(0) oxe-y vl R . 1, (0)




If, in addition, we assume C to be small also, i.e. if we
expand the derivatives of the modified BESSEL functions in
eq.(43), we recover our formulae (33) except for the terms

of higher than 3% order in A.
I" 1 1t :

P I1 I1 ... denote the corresponding derivatives of I1,..
9
with respect to their argument, for example
1 d2
I, (2€) = ——— I,(20)
a(ac)

If we eliminate the higher order derivatives by means of the
differential equation of the modified BESSEL functions

eq.(43) may be rewritten in terms of I,(C), I;(C), I,(2c),
I,(20), I5(3c) I5(3C):

2 2I, (C)
1 3 A 4
(20)
- % ((1+ )I (C) - '—I (C)> (1+ 2) -7-(-2—0)- }
v I, (c) 3
82 = FTI(2C [(1+ Cz) ’TTET - 6:] (44)
_ A3 : 1;(C) I,(2C)
83 = BIL(30) I,7(0) {4[(” 72010 - —— J“ _"(_‘720
2 1
- £ I,00) - 11(0)}-
The magnetic axis R=S is located at the extremum of
Fy_p = R° +2R[a,T;(R) + a,Iy(2R) + asI5(3R) +.. ] (45)

and may thus be obtained from the following equation:

5% + (148%) [a,I,(8) + 2a,1,(28) + 3a515(35) +..] =0 (46)




One can show that to first order in A the magnetic surfaces
are of circular cross section. Considering a circle centered
at r=b (B=bk) which has the radius 4 (D=kd), we can conclude
from the first of eq.(43) that - to first order -

a, = - m = - W (47)
or I"I(D)
B =A m (48)

If we expand for DXK1 and C<1, we again find the previous
formula (36). The fact that we do not obtain circles for more
than first order in A is also apparent from eq.(48). Conside-
ring second order, for instance, we would have to postulate

both A B ( )
a, = - = = 47
1 ) 70D
AZI;'(C) BZI;‘(D)
82 = 2IT(C) IL(2C) = ZIT(D) IL(2D) (49)

Eq.(47) and (49), however, cannot be satisfied simultaneously.
If we put D=0 in eq.(48), we get the shift S of the magnetic
axis from the geometric axis to first order in A
17(0) A
ks = § = A Tr7Ey = TINO) (50)

which is the lowest order solution of eq.(46).
We may solve eq.(46) up to terms of 374 order in A, to get

S = i * X [ g 17 = 311(0)(1+ gg)
3 1,(0) 1)'C) ‘] (51)
ATIHET I.'(2c) -4
o - " IT(2C) \ 2 )

Expanding the BESSEL functions in this equation (51) for C<1
we again get eq.(34).



4. Numerical results

The boundary problem posed by eq.(25) and (29) will be
solved with the help of the least mean square method.
We restrict ourselves to the computation of coefficients

a, with n =N Let be

max’

Ry, &7 points on the boundary circle (29) with J=1,2,..d

where Jmax‘é N . Let us,furthermore, define

max
Cyy, = 2R Iﬁ(nRJ) cos(nQJ) (52)
2 NMQX
FJ N RJ +1£§anan (53)
_ e
Fo= s }; Fy (54)
max
1 Jmax ( )
c_ = c 55
n Jmax 1=4 dn
°3 93T Qe
RS = > RS (56)
max ¥
2
S .= FP_-F
q Jg; ( J ) (57)

We now calculate the set of coefficients By e ey that

minimalizes the function Sq by solving the NmaX equations
S

Y

n

=0 n=1,2,..N (58)

max

This set of equations (58) may be written in the following
form:  Nmax

Z g a =b _ (59)
D=4 nk~k n n—1,2...Nmax
/5N
Wiyl &nk =J§;(0Jn_cn)(ch-Ck)
JImax -_— (60)
" S Y
b = ZE(an c )(RJ LR€)
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Table 1 shows some examples for several sets of parameters
A and C, giving S (the location of the magnetic axis, i.e.
the minimum of F), S/A , and the six coefficients 8ree8p e
Nmax=6 and Jmax=34 has been used for all cases.

Figure?a shows a plot of the F=const lines for the case
A=0.5, C=1 as an example. Within the plotting precision

the F=const lines are circles as described by eq.(48).

Table 2 gives more details concerning this case (A=0.5, C=1)
for different values of Nm and J . As a figure of merit

ax max
we introduce the maximum relative fluctuation of F along the
boundary circle, P g
T = Jd,max J,min (61)
F
where FJ,max and FJ,min are the largest and smallest values

of FJ on the circle. This allows us to compare the precision
of the different cases in table 2.

T as defined by eq.(60) is of importance because according

to the mean value theorem for elliptic differential equations
the error F inside the circle is never larger than on the
boundary circle /3/ "

max—Fmin (62)

/AF{s[F
Figure 3b gives F(X), again for A=0.5, C=1.

Table 3 gives a comparison of the two approximations intro-
duced in the preceding sections 2 and 3 with the numerical
results. We consider some of the cases introduced by table 1

and give the shift S of the magnetic axis as computed

a) numerically and already contained in table 1

b) from eq.(50), which is valid for A small
and C arbitrary,

c) from eq.(34), which is valid for both A and C small,
and the maximum relative fluctuation T as computed

a) numerically,

b) from the set of coefficients (44) ,
‘ which is valid for A small and C arbitrary,

c) from the set of coefficients (33),
which is valid for both A and C small.
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Fig.3 F = const. lines (a) and
magnetic flux function (b)
for the case A = 0.5, C = 1.

b)
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Finally we want to give S as a function of A and C . Accor-

ding to eq. (51) S/A 1is constant to first order in A ; in Fig.5
we plot S/A as a function of C with A as a parameter.

A e S/A, forA=02
077 \A AS/A, " A=t

Fig. 5 Location S of the magnetic axis
for some cases of A, C.
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A C S S/A Qy ay a3 a, as ag
0.2 0.21 0.1968 0.9840 -0.3880 0.0285 -2.95x10™> 3.55x10"% -4.56x107> 5.14x10~°
0.2 0.5 0.1827 0.9137 -0.3607 0.0240 -2.22x107> 2.36x10"% -2.67x10™> 2.55x10°8
0.2 0.7 0.1682 0.8412 -0.3326 0.0198 -1.62x10"> 1.52x10~% -1.51x10"2 1.24x107%
0.2 1.0 0.1429 0.7143 -0.2831 0.0136 -8.88x10"% 6.57x107> -5.08x10"° 3.25x107
0.2 1.2 0.125F 0.6272 -0.2490 0.0102 -5.57x10"' 3.45x10™> -2.22x10" 1.18x10~7
0.2 1.5 0.1009 0.5044 -0.2007 0.0062 -2.59x10"' 1.21x1072 -5.82x10~7 2.29x108
0.2 2.0 0.0674 0.3371 -0.1345 0.0026 -6.58x10"> 1.87x10~° -5.47x108 1.31x1072
0.2 2.5 0.0438 0.2192 -0.0876 0.0010 -1.58x10"2 2.71x10~7 -4.79x10~2 6.90x10~11
0.2 3.0 0.0281 0.1405 -0.0562 0.0004% -3.70x10"° 3.84x1078 -4.11x10710 3.56x10712
0.5 0.51 0.4572 0.9145 -0.8523 0.1437 -3.30x10"2. 8.01x107> -1.61x10"2 1.77x10~*
0.5 0.7 0.4234 0.8467 -0.7944 0.1215 -2.51x1072 5.45x1072 -9.73x10" % 9.45x1072
0.5 1.0 0.3602 0.7204 -0.6846 0.0856 -1.42x10"2 2.45x107> -3.44x10"% 2.59x1072
0.5 1.5 0.2544 0.5088 -0.4939 0.0405 -4.32x1077 4.70x10™% -4.12x1075 1.92x10°°
0.5 3.0 0.0709 0.1418 -0.1414 0.0027 -6.34x1070 1.53x10"° -2.96x108 3.02x1071°
0.8 1.0 0.5883 0.7354 -1.0510 0.2148 -5.12x10‘2 1.01x1072 -1.29x10'3 7.44x10'5
1.0 1.01 0.7474 O.T4T4 -1.2650 0.3052 -7.44x1072 1.32x1072 -1.39x107> 6.39x10~2
1.0 1.2 0.6655 0.6655 -1.1501 0.2437 -5.17x10"° 7.91x10™2 -7.14x10"% 2.78x1072
1.0 1.5 0.5371 0.5371 -0.9601 0.1590 -2.59x10"2 3.01x107> -2.05x10~" 5.98x10"
1.0 2.0 0.3561 0.3561 -0.6700 0.0697 -6.97x10> 4.96x10"% -2.06x10"> 3.65x10°7
1.0 3.0 0.1472 0.1472 -0.2907 0.0111 -4.05x10™% 1.05x107> -1.58x10"7 1.02x10~2
Table 1 Some examples for several sets of parameters A and C .
Noox = 6 and s 34,
Imax Nmax T q @ a3 a, g ag Qg dg
U6 5.5x10‘4 -0.68461 0.08561 -0.01422 2.45::10'3 -3.44x10‘4 2.59x10'5
19 8 5.6x10°° -0.68467 0.08576 -0.01450 2.75x107> -5.30x10"% 9.12x10™° -1.15x10"> 7.36x107'
19 6 4.ox10”% -0.68464 0.08563 -0.01422 2.44x1070 -3.40x10"' 2.55x107°
19 4 6.3x107° -0.68398 0.08336 -0.01152 1.00x107
19 2 9.4x1072 -0.65930 0.05261
6 6 1.1x10% _0.47860 -0.03443  0.02599 -5.95x107>  7.01x10”* -3.49x107>
Table 2 The case A = 0.5, C = 1 for different values of Nmax and Jmax
S 1}
A © Tab.l Eq(50) Eq.(34) Tab.l Eq.(44) Eq.(33)
0.2 0.5 s SoMBs & ¥0r183 1gekIoR A 1 3x10 2 B dsixi0Re
0.2 0.7 0.168 0.168  0.169 4.1x10°7  9.7x10” 2.9x1072
0.2 1.2 OidoE - 0,125 -~ 0.1k 1,7%10"05 = 1351072 = 0 oXto -
0.2 3.0 0.028  0.028  1.388 3,0x10°2: ) exl0 % el
0.5 0.7 0.423  0.420  0.428 0,8x10""  2.3x107} o
0.5 1.0 0.360 0.357  0.382 5.5x10°%  1.8x107} |
0.8 1.0 0.588  0.571  0.640 1.4x1072 S 2
1.0 2.0 0.356  0.337 1.708 6.6x1072 < 2l
1) 3.0 0.147 = 0.14%0  7.750 6.1x1072 Sl ol
Table 3 Comparison of the two approximations: eqs. (50) and (34) for S

eqs. (44) and (33) for a,




S

AcC S _SIA a4 dj as a, dsg dg
0.2 0.21 0.1968 0.9840 -0.3880 0.0285 -2.95x107> 3.55x10"% -4.56x1072 5.14x10~°
0.2 0.5 0.1827 0.9137 -0.3607 0.0240 -2.22x107> 2.36x10"% -2.67x10~2 2.55x10°°
0.2 0.7 0.1682 0.8412 -0.3326 0.0198 -1.62x10"> 1.52x10"} -1.51x10"2 1.24x10~
0.2 1.0 0.1429 0.7143 -0.2831 0.0136 -8.88x10~% 6.57x1072 -5.08x10'6 3.25x10'7
0.2 1.2 0.1254 0.6272 -0.2490 0.0102 -5.57x10"% 3.45x1070 -2.22x10"° 1.18x10~7
0.2 1.5 0.1009 0.5044 -0.2007 0.0062 -2.59x10"} 1.21x1072 -5.82x10"7 2.29x108
0.2 2.0 0.0674 0.3371 -0.1345 0.0026 -6.58x107> 1.87x10~° -5.47x1078 1.31x1072
0.2 2.5 0.0438 0.2192 -0.0876 0.0010 -1.58x10"2 2.71x10"7 -4.79x10~2 6.90x10~11
0.2 3.0 0.0281 0.1405 -0.0562 0.000% -3.70x107° 3.84x10™% -4.11x10710 3.56x10712
0.5 0.51 0.4572 0.9145 -0.8523 0.1437 -3.30x10"2 8.01x10™> -1.61x10"> 1.77x10~}
0.5 0.7 0.4234 0.8467 -0.7944 0.1215 -2.51x10'2 5.45x10'3 -9.73x10‘4 9.45x10'5
0.5 1.0 0.3602 0.7204 -0.6846 0.0856 -1.42x10"2 2.45x107> -3.44x10"% 2.59x1072
0.5 1.5 0.2544 0.5088 -0.4939 0.0405 -4.32x1077 4.70x10~ -4.12x1072 1.92x10'6
0.5 3.0 0.0709 0.1418 -0.1414 0.0027 -6.34x1070 1.53x10"° -2.96x1078 3.02x1071°
0.8 1.0 0.5883 0.7354 -1.0510 0.2148 -5.12x10"2 1.01x10™2 -1.29x10"> 7.44x107>
1.0 1.01 O.7474 O0.7474 -1.2650 0.3052 -T.44x1072 1.32x10"2 -1.39x10"2 6.39x10°2
1.0 1.2 0.6655 0.6655 =-1.1501 0.2437 -5.17x10" 7.91x10'3 -7.14x10" 2.78x10'5
1.0 1.5 0.5371 0.5371 -0.9601 0.1590 -2.59x10"2 3.01x10™> -2.05x10"% 5.98x10~°
1.0 2.0 0.3561 0.3561 -0.6700 0.0697 -6.97x10™> 4.96x10"% -2.06x10™> 3.65x10°7
1.0 3.0 0.1472 0.1472 -0.2907 0.0111 -4.,05x10"" 1.05x1072 -1.58x10"7 1.02x102
Table 1 Some examples for several sets of parameters A and C .
Noay = 6 and-J7 =Dk
Jmax Nmax T Q 9 a3 a, dg ag Qy dg
34 6 5.5x10"% -0.68461 0.08561 -0.01422 2.45x1070 -3.44x10"" 2.50x107°
19 8 5.6x10° -0.68467 0.08576 -0.01450 2.75x107> -5.30x10"% 9.12x107 -1.15x107> 7.36x107(
19 6 b.ox10”% _0.68464 0.08563 -0.01422 2.44x107> -3.40x107"' 2.55x107°
19 4 6.3x107> -0.68398 0.08336 -0.01152 1.00x107
19 2 9.4x10"2 -0.65930 0.05261
6 6 1.1x10% _0.47860 -0.03443  0.02599 -5.95x107>  7.01x10™F -3.49x107°
Table 2 The case A = 0.5, C = 1 for different values of Nmax and Jmax
) !
A C Tabl Eq(50) Eq.(34) Tab.1 Eq.(44) Eq.(33)
0.2 0.5 O i s e (05 1.2x10°7  1.3x1072  1.1x107°
0.2 0.7 0.168 0.168  0.169 n.ax10-7  g.7x1071  p.ox107R
0.2 1.2 0125 0,126 0.1h1 1.710°0 1 31072 2 axtoT
0.2 3.0 0.028 0.028 1.388 3.2x10'6 1.0x1072 <-1
0.5 0.7 0.423  0.420  0.428 2.8x10%  2.3x107! >1
0.5 150 0.360  0.357  0.382 5.5x10~%  1.8x107} Sl
0.8 1.0 0.588  0.571  0.640 1.4x1072 o A
1.0 2.0 0.356  0.337  1.708 6.6x10"2 el el
1.0 3.0 0,147 - 0,140  T.750 6.1x1072 S )
Table 3 Comparison of the two approximations: eqs. (50) and (34) for S

eqs. (44) and (33) for a

n
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